

Gravity Surveying

Dr. Laurent Marescot

laurent@tomoquest.com

Introduction

Gravity surveying...

Investigation on the basis of relative variations in the Earth'gravitational field arising from difference of density between subsurface rocks

Application

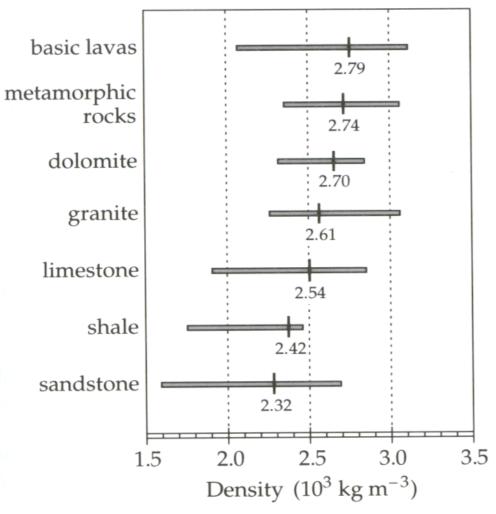
- Exploration of fossil fuels (oil, gas, coal)
- Exploration of bulk mineral deposit (mineral, sand, gravel)
- Exploration of underground water supplies
- Engineering/construction site investigation
- Cavity detection
- Glaciology
- Regional and global tectonics
- Geology, volcanology
- Shape of the Earth, isostasy
- Army

Structure of the lecture

- 1. Density of rocks
- 2. Equations in gravity surveying
- 3. Gravity of the Earth
- 4. Measurement of gravity and interpretation
- 5. Microgravity: a case history
- 6. Conclusions

1. Density of rocks

Rock density



Rock density depends mainly on...

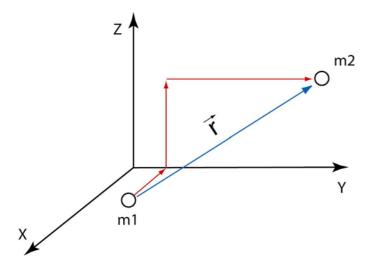
- Mineral composition
- Porosity (compaction, cementation)

Lab or field determination of density is useful for anomaly interpretation and data reduction

2. Equations in gravity surveying

First Newton's Law

Newton's Law of Gravitation



$$\vec{F} = -\frac{G m_1 m_2}{r^2} \vec{r}$$

$$|r| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Gravitational constant
$$G = 6.67 \times 10^{-11}$$
 m³kg⁻¹s⁻²

$$m^3 kg^{-1}s^{-2}$$

Second Newton's Law

$$\vec{F} = m \vec{a}$$

$$\vec{a} = -\frac{GM}{R^2} \vec{r} = \vec{g}_N$$

$$g_N \cong 9.81 \text{ m/s}^2$$

 g_N : gravitational acceleration or "gravity"

for a spherical, non-rotating, homogeneous Earth, g_N is everywhere the same

$$M = 5.977 \times 10^{24}$$
 kg

$$R = 6371$$
 km

mass of a homogeneous Earth

mean radius of Earth

Units of gravity

- 1 gal = 10^{-2} m/s²
- $1 \text{ mgal} = 10^{-3} \text{ gal} = 10^{-5} \text{ m/s}^2$
- 1 μ gal = 10⁻⁶ gal = 10⁻⁸ m/s² (precision of a gravimeter for geotechnical surveys)
- Gravity Unit: 10 gu = 1 mgal
- Mean gravity around the Earth: 9.81 m/s² or 981000 mgal

Keep in mind...

...that in environmental geophysics, we are working with values about...

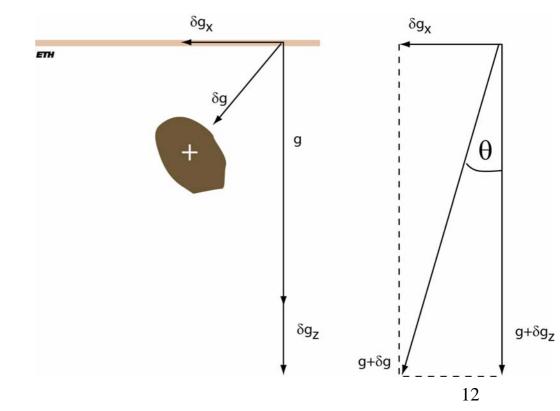
 $0.01-0.001 \text{ mgal} \approx 10^{-8} - 10^{-9} g_N !!!!$

Measurement component

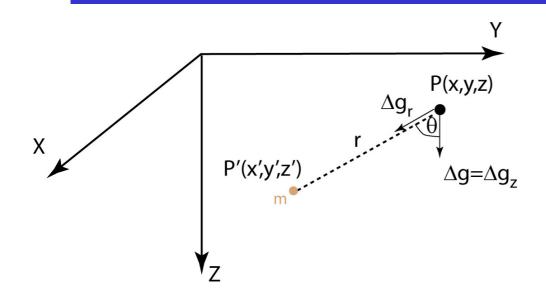
The measured perturbations in gravity effectively correspond to the vertical component of the attraction of the causative body

we can show that θ is usually insignifiant since $\delta g_z << g$ Therefore...

$$\delta g \approx \delta g_z$$



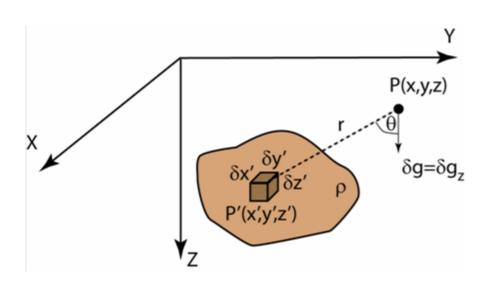
Grav. anomaly: point mass



$$\Delta g_r = \frac{Gm}{r^2}$$
 from Newton's Law

$$\Delta g = \Delta g_z = \frac{Gm}{r^2}\cos\theta = \frac{Gm(z'-z)}{r^3}$$

Grav. anomaly: irregular shape



$$\Delta g = \frac{Gm(z'-z)}{r^3}$$

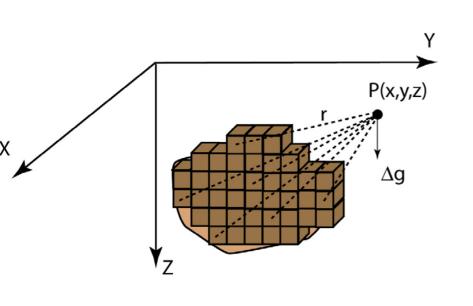
for $\delta m = \rho \, \delta x' \delta y' \delta z'$ we derive:

$$\delta g = \frac{G\rho(z'-z)}{r^3} \delta x' \delta y' \delta z'$$

with ρ the density (g/cm³)

$$r = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

Grav. anomaly: irregular shape



for the whole body:

$$\Delta g = \sum \sum \frac{G\rho(z'-z)}{r^3} \delta x' \delta y' \delta z'$$

if $\delta x', \delta y'$ and $\delta z'$ approach zero:

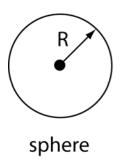
$$\Delta g = \iiint \frac{G\rho(z'-z)}{r^3} dx' dy' dz'$$

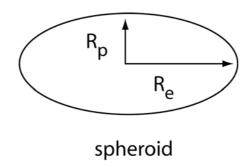
Conclusion: the gravitational anomaly can be efficiently computed! The direct problem in gravity is straightforward: Δg is found by summing the effects of all elements which make up the body

3. Gravity of the Earth

Shape of the Earth: spheroid

- Spherical Earth with *R*=6371 km is an approximation!
- Rotation creates an ellipsoid or a spheroid

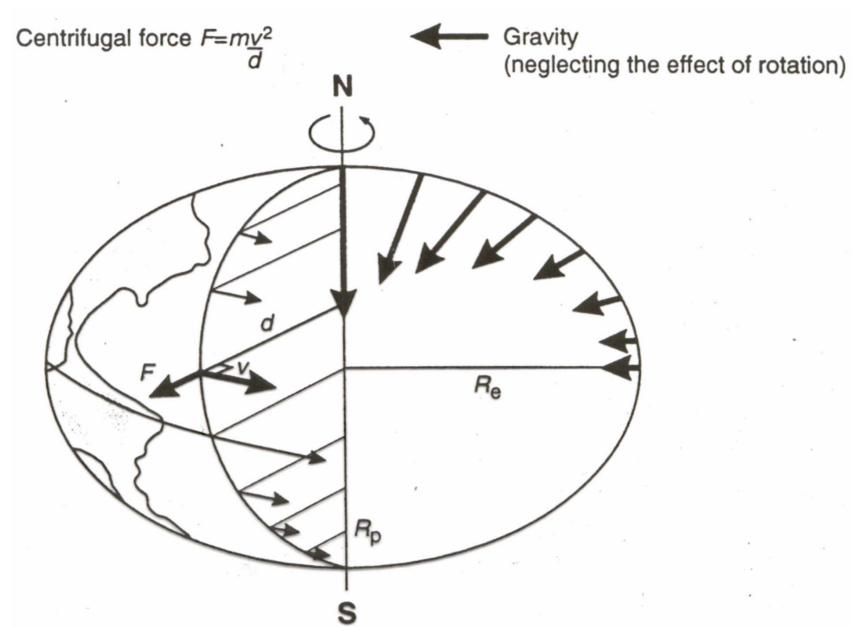


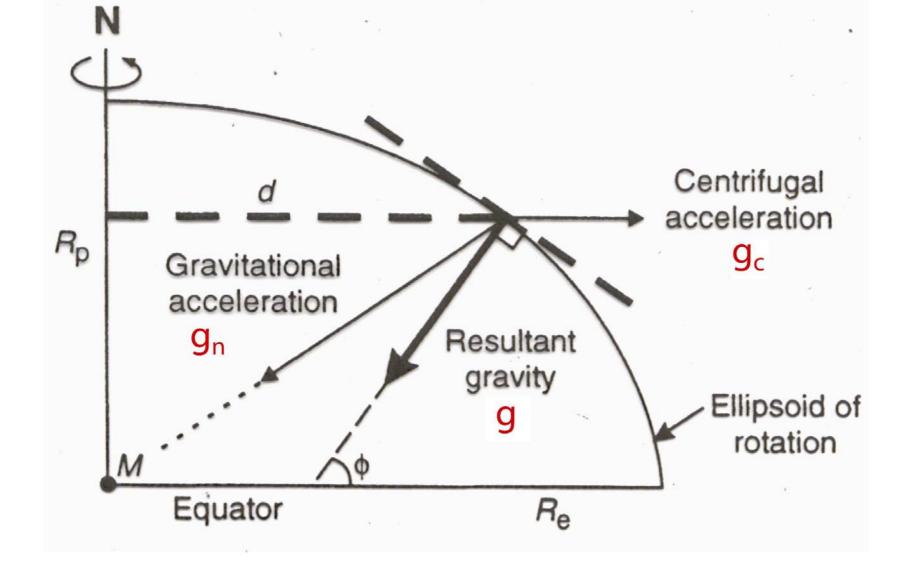


$$\frac{R_e - R_p}{R_e} = \frac{1}{298.247}$$

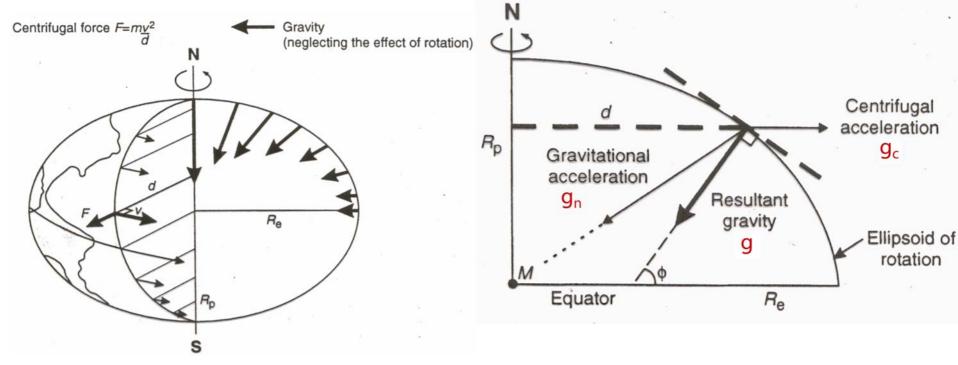
Deviation from a spherical model:

$$R_e - R = 7.2$$
 km
 $R - R_p = 14.3$ km





The Earth's ellipsoidal shape, rotation, irregular surface relief and internal mass distribution cause gravity to vary over it's surface



$$g = g_n + g_C = G\left(\frac{M}{R^2} - \omega^2 R \cos \phi\right)$$

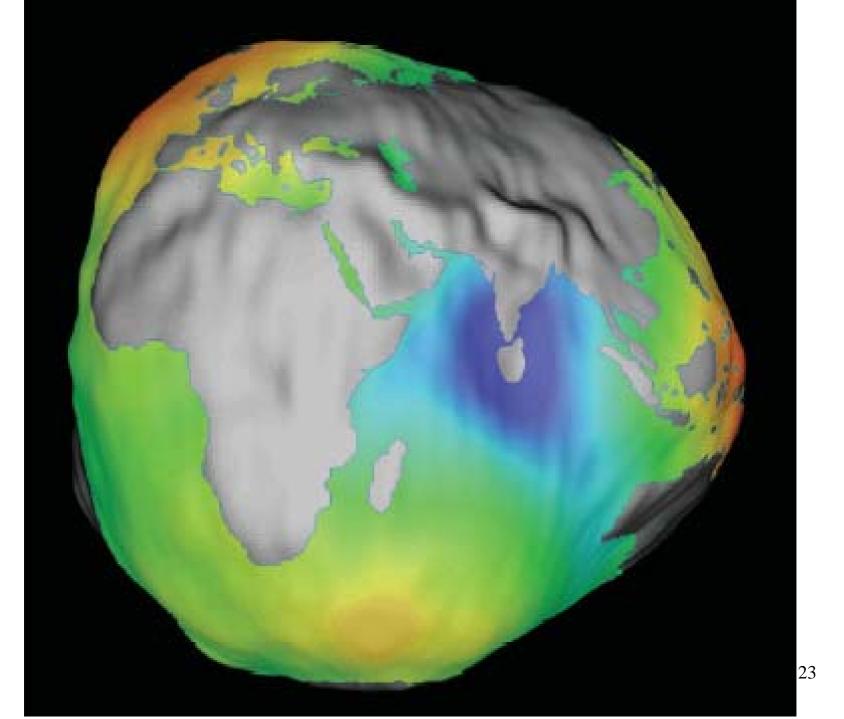
- From the equator to the pole: g_n increases, g_c decreases
- Total amplitude in the value of g: 5.2 gal

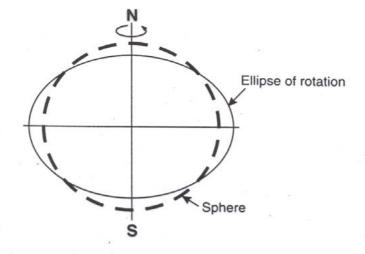
Reference spheroid

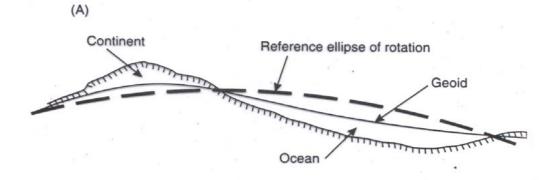
- The reference spheroid is an oblate ellipsoid that approximates the mean sea-level surface (geoid) with the land above removed
- The reference spheroid is defined in the Gravity Formula 1967 and is the model used in gravimetry
- Because of lateral density variations, the geoid and reference spheroid do not coincide

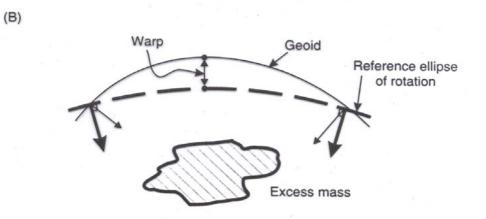
Shape of the Earth: geoid

- It is the sea level surface (equipotential surface)
- The geoid is everywhere perpendicular to the plumb line



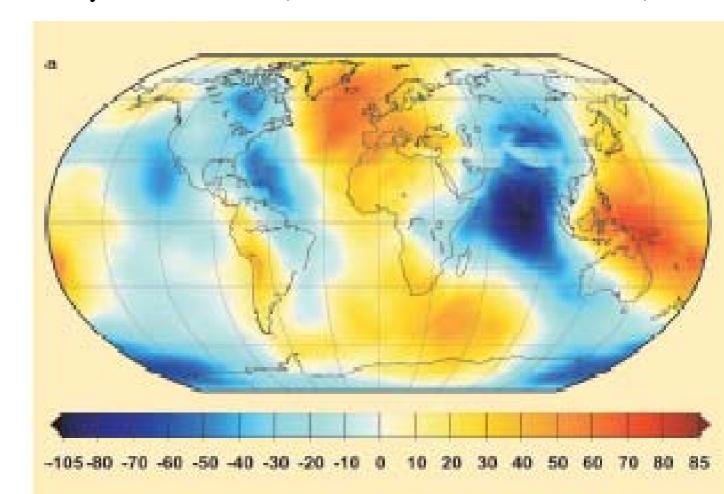






Spheroid versus geoid

Geoid and spheroid usually do not coincide (India -105m, New Guinea +73 m)



4. Measurement of gravity and interpretation

Measurement of gravity

Absolute measurements

• Large pendulums

$$T = 2\pi \sqrt{\frac{L}{g}}$$

Falling body techniques

$$z = \frac{1}{2} g t^2$$

For a precision of 1 mgal
Distance for measurement 1 to 2 m
z known at 0.5 µm
t known at 10⁻⁸ s

Relative measurements

- Gravimeters
- Use spring techniques
- Precision: 0.01 to 0.001 mgal

Relative measurements are used since absolute gravity determination is complex and long!

Gravimeters

LaCoste-Romberg mod. G

Scintrex CG-5

Source: P. Radogna, University of Lausanne

Stable gravimeters

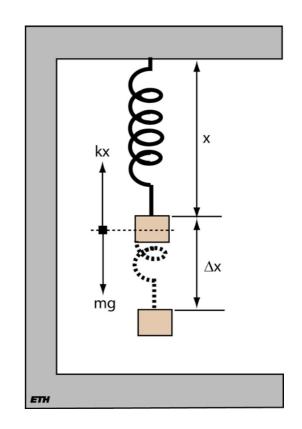
$$\Delta g = \frac{k}{m} \Delta x$$
 Hook's Law

$$g = \frac{4\pi^2}{T^2} \Delta x$$
 with $T = 2\pi \sqrt{\frac{m}{k}}$

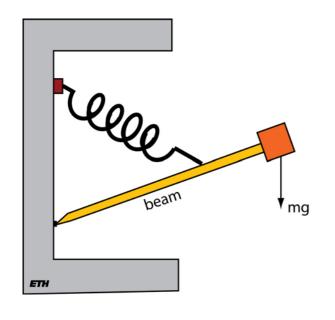
For one period

k is the elastic spring constant

Problem: low sensitivity since the spring serves to both support the mass and to measure the data. So this technique is no longer used...



LaCoste-Romberg gravimeter



This meter consists in a hinged beam, carrying a mass, supported by a spring attached immediately above the hinge.

A "zero-lenght" spring can be used, where the tension in the spring is proportional to the actual lenght of the spring.

- More precise than stable gravimeters (better than 0.01 mgal)
- Less sensitive to horizontal vibrations
- Requires a constant temperature environment

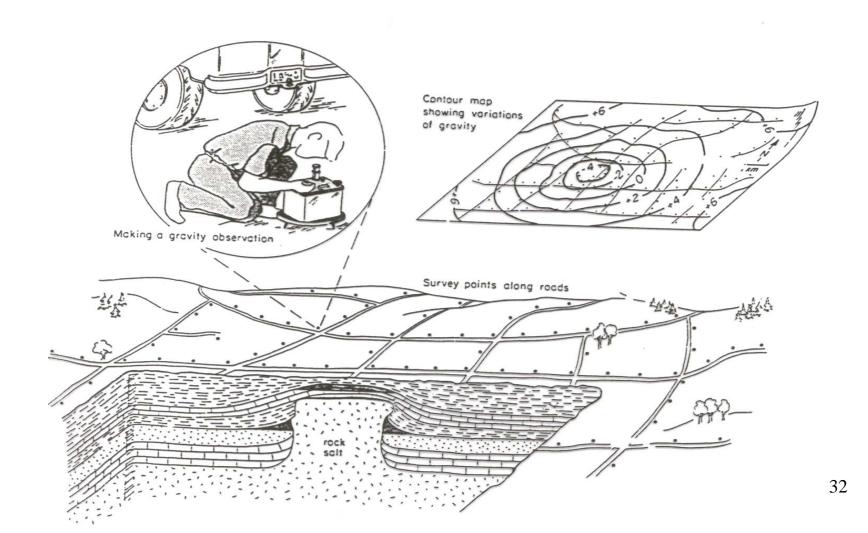
CG-5 Autograv

CG-5 electronic gravimeter:

CG-5 gravimeter uses a mass supported by a spring. The position of the mass is kept fixed using two capacitors. The dV used to keep the mass fixed is proportional to the gravity.

- Self levelling
- Rapid measurement rate (6 meas/sec)
- Filtering
- Data storage

Gravity surveying



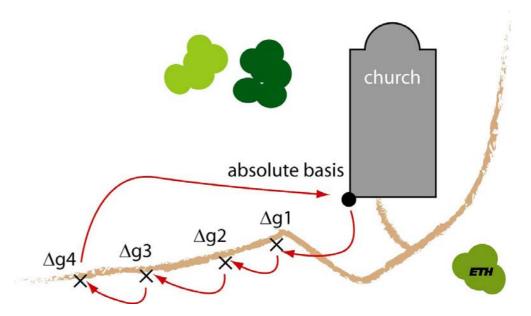
Factors that influence gravity

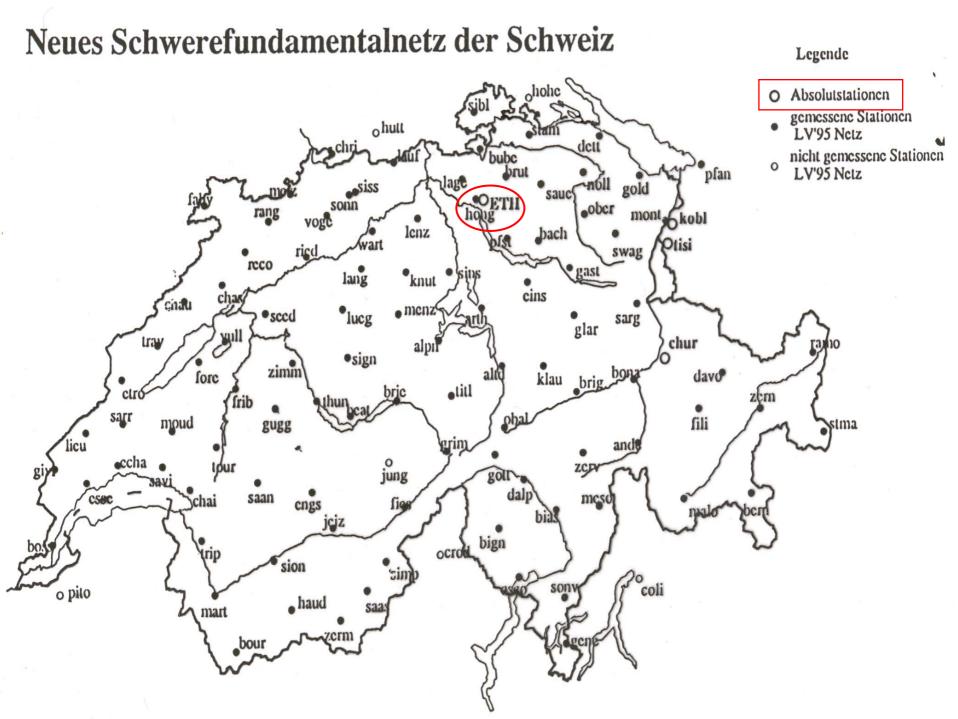
The magnitude of gravity depends on 5 factors:

- Latitude
- Elevation
- Topography of the surrounding terrains
- Earth tides
- Density variations in the subsurface:
 this is the factor of interest in gravity exploration, but it is much smaller than latitude or elevation effects!

Gravity surveying

- Good location is required (about 10m)
- Uncertainties in elevations of gravity stations account for the greatest errors in reduced gravity values (precision required about 1 cm) (use dGPS)
- Frequently read gravity at a base station (looping) needed





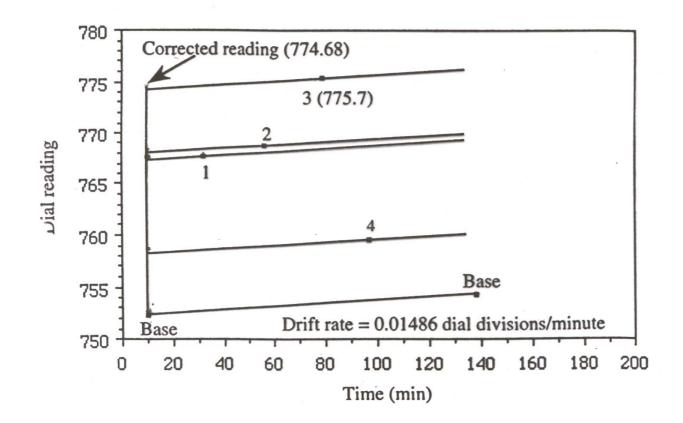
Observed data corrections

 g_{obs} can be computed for the stations using Δg only after the following corrections:

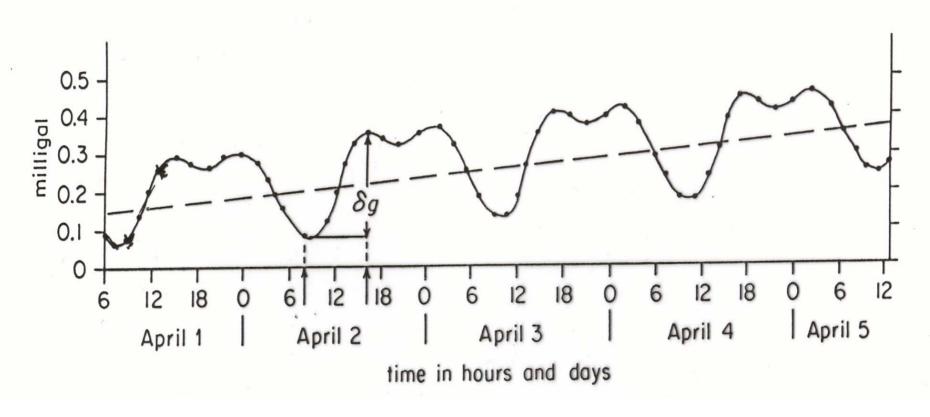
- Drift correction
- Tidal correction
- Distance ground/gravimeter ("free air correction" see below)

Drift correction on observed data

Gradual linear change in reading with time, due to imperfect elasticity of the spring (creep in the spring)



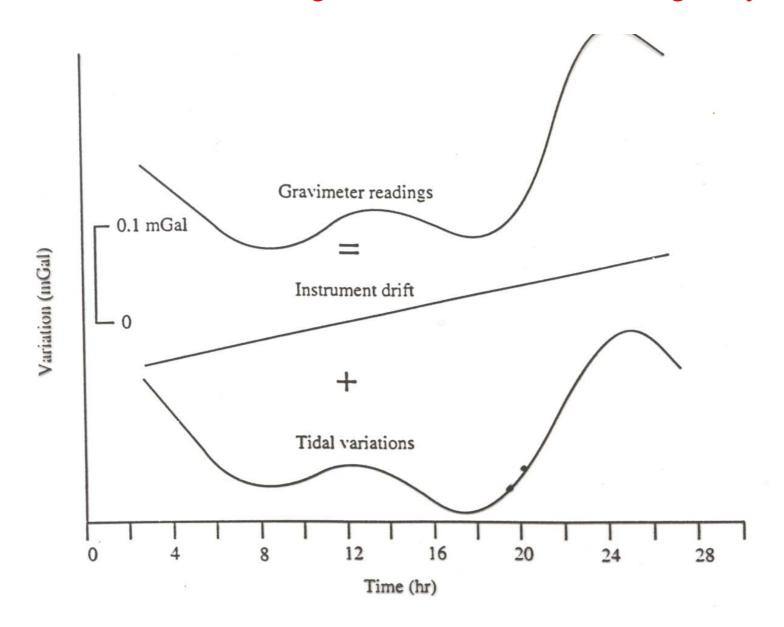
Tidal correction on observed data



Effect of the Moon: about 0.1 mgal

Effect of the Sun: about 0.05 mgal

After drift and tidal corrections, g_{obs} can be computed using Δg , the calibration factor of the gravimeter and the value of gravity at the base



Gravity reduction: Bouguer anomaly

$$BA = g_{obs} - g_{model}$$

$$g_{model} = g_{\phi} - FAC + BC - TC$$

- g_{model} model for an on-land gravity survey
- g_{ϕ} gravity at latitude ϕ (latitude correction)
- FAC free air correction
- BC Bouguer correction
- TC terrain correction

Latitude correction

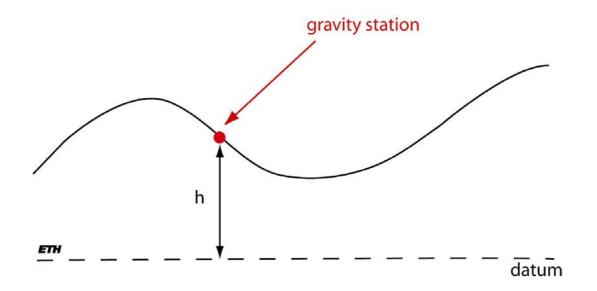
$$g_{\phi} = g_{equator} \left(1 + \beta_1 \sin^2 \phi + \beta_2 \sin^4 \phi \right)$$

- β_1 and β_2 are constants dependent on the shape and speed of rotation of the Earth
- The values of β_1 , β_2 and $g_{equator}$ are definded in the Gravity Formula 1967 (reference spheroid)

Free air correction

The *FAC* accounts for variation in the distance of the observation point from the centre of the Earth.

This equation must also be used to account for the distance ground/gravimeter.



Free air correction

$$g = \frac{GM}{R^2}$$

$$\frac{dg}{dR} = -2\frac{GM}{R^3} = -2\frac{g_N}{R}$$

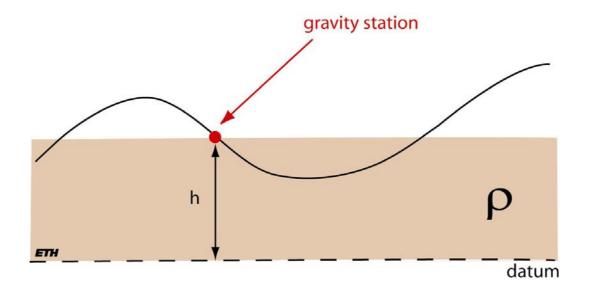
$$\Delta g_{H\ddot{o}he} \approx 2 \frac{g_N dR}{R} \approx 0.3 \text{ mgal} \cdot dR$$

$$FAC = 0.3086 h$$
 (h in meters)

Bouguer correction

- The *BC* accounts for the gravitational effect of the rocks present between the observation point and the datum
- Typical reduction density for the crust is $\rho = 2.67$ g/cm³

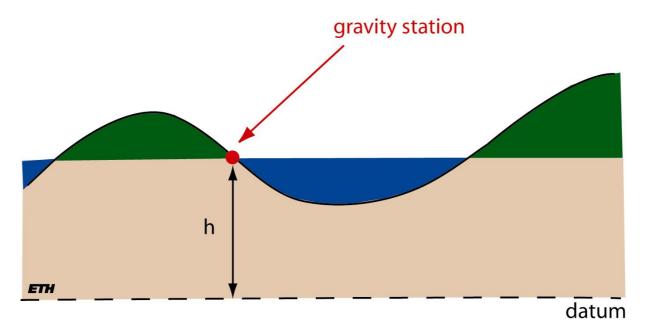
$$BC = 2\pi G \rho h$$

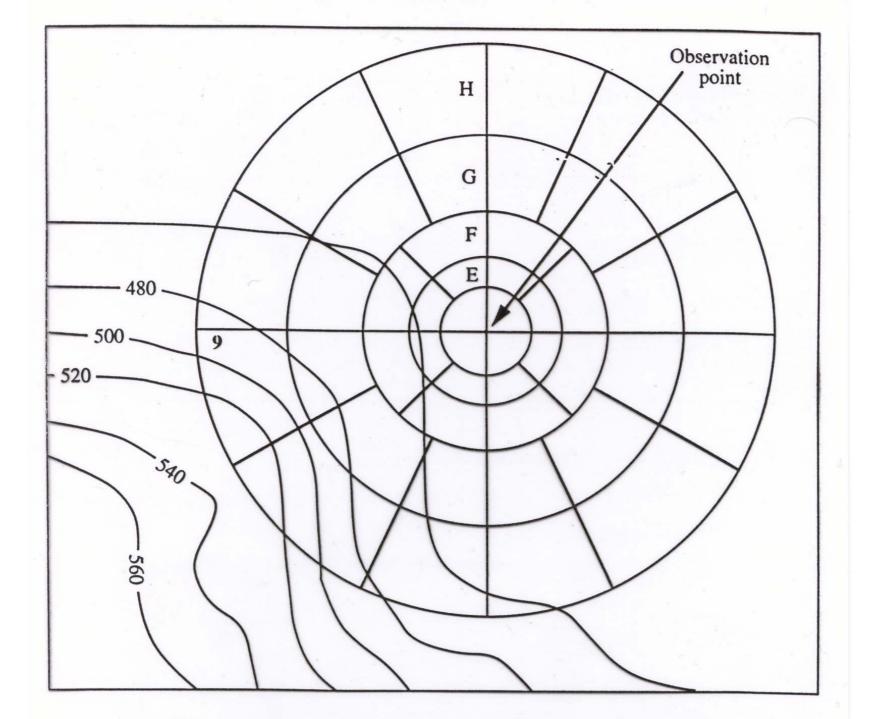


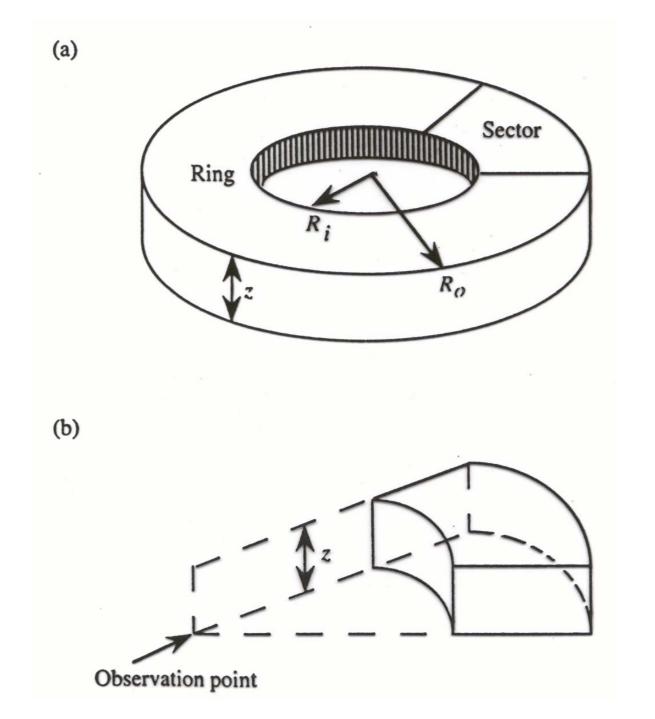
Terrain correction

The *TC* accounts for the effect of topography.

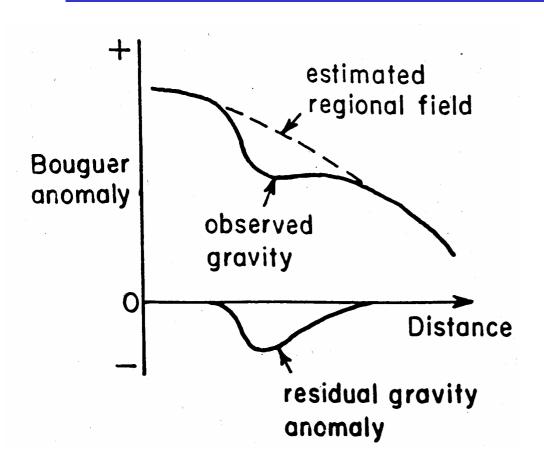
The terrains in green and blue are taken into account in the *TC* correction in the same manner: why?





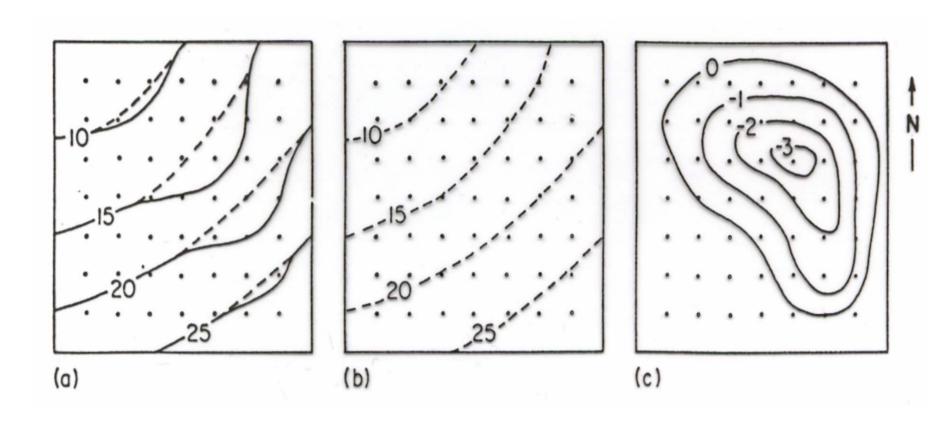


Residual gravity anomaly

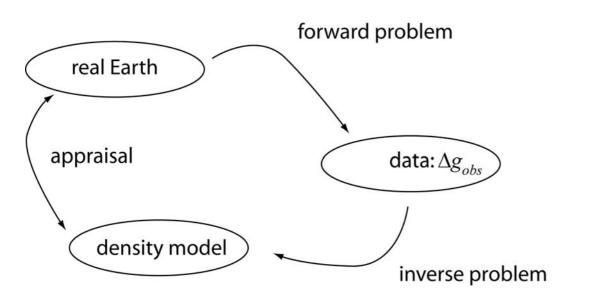


The regional field can be estimated by hand or using more elaborated methods (e.g. upward continuation methods)

Bouguer anomaly



Interpretation: the inverse problem

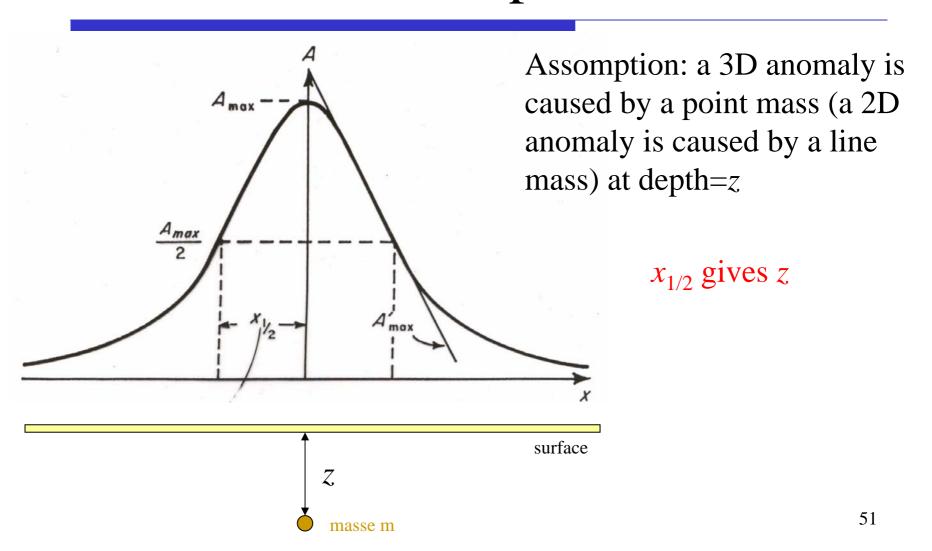


Two ways of solving the inverse problem:

- "Direct" interpretation
- "Indirect" interpretation and automatic inversion

Warning: "direct" interpretation has nothing to do with "direct" (forward) problem!

Direct interpretation



Direct interpretation

Geometry	Formula	Depth
Ball	$\Delta g = \frac{4\pi GR^3 \Delta \rho}{3z^3} \frac{1}{\left[1 + \left(x^2/z^2\right)\right]^{2}}$	$z = 1.305x_{1/2}$
Horizontal cylinder	$\Delta g = \frac{2\pi G R^2 \Delta \rho}{z} \frac{1}{\left[1 + \left(x^2/z^2\right)\right]}$	$z = 1.0x_{1/2}$
Vertical cylinder	$\Delta g = \frac{\pi G R^2 \Delta \rho}{\left(x^2 + z^2\right)^{1/2}}$	$z = 0.58x_{1/2}$

Indirect interpretation

- (1) Construction of a reasonable model
- (2) Computation of its gravity anomaly

calculated data observed data

model: trial 1

- (3) Comparison of computed with observed anomaly
- (4) Alteration of the model to improve correspondence of observed and calculated anomalies and return to step (2)

not good!

Aive b

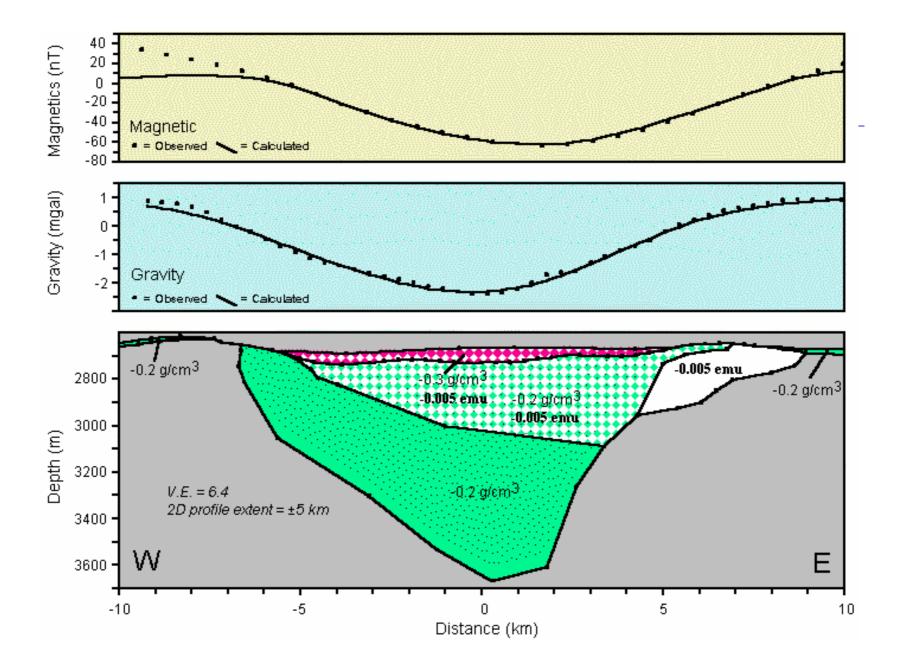
distance

distance

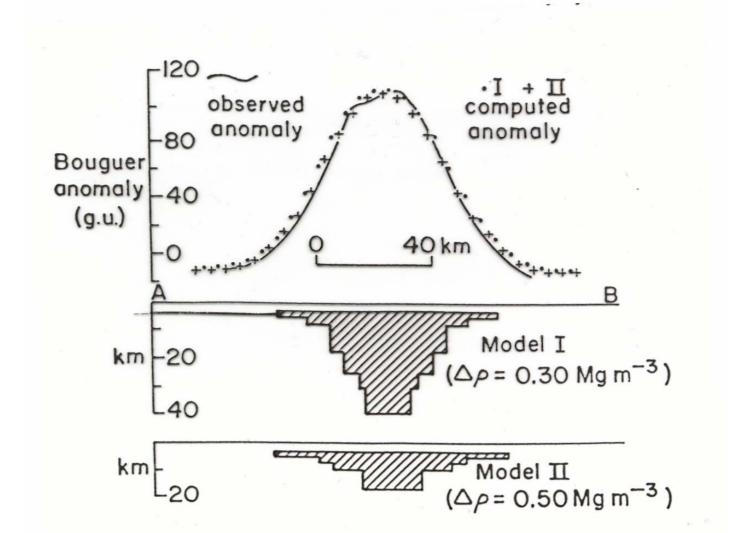
model: trial 2

53

model: trial 3



Non-unicity of the solution



Automatic inversion

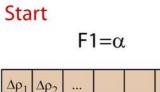
Automatic computer inversion with a priori information for more complex models (3D) using optimization algorithms. Minimize a cost (error) function F

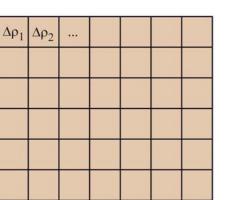
$$F = \sum_{i=1}^{n} \left(\Delta g_{obs_i} - \Delta g_{calc_i} \right)$$

with *n* the number of data

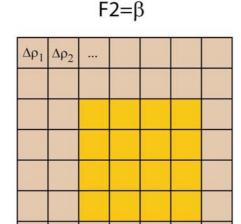
Automatic inversion is used when the model is complex (3D)

Automatic inversion

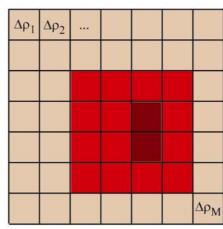




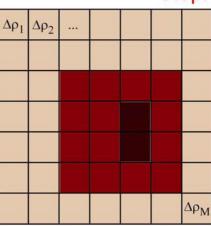
Modification 1

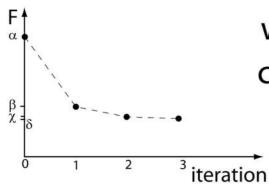


Modification 2



Modification 3

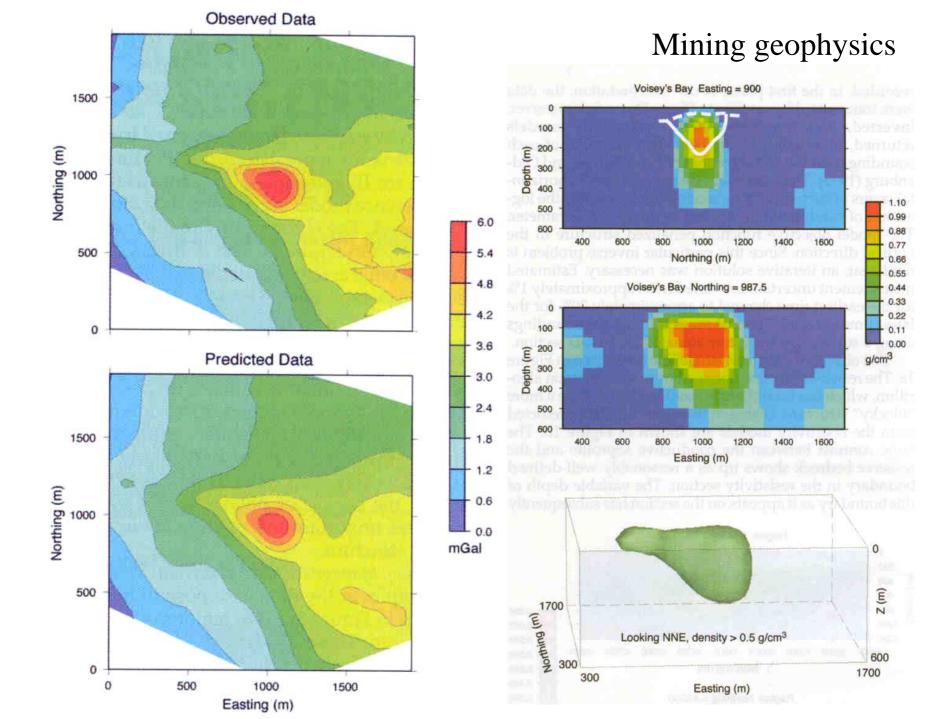




 $\Delta \rho_{M}$

with $\alpha > \beta > \chi > \delta$ convergence and stop if $\chi \cong \delta$

 $\Delta \rho_{M}$



5. Microgravity: a case history

A SUBWAY PROJECT IN LAUSANNE, SWITZERLAND, AS AN URBAN MICROGRAVIMETRY TEST SITE

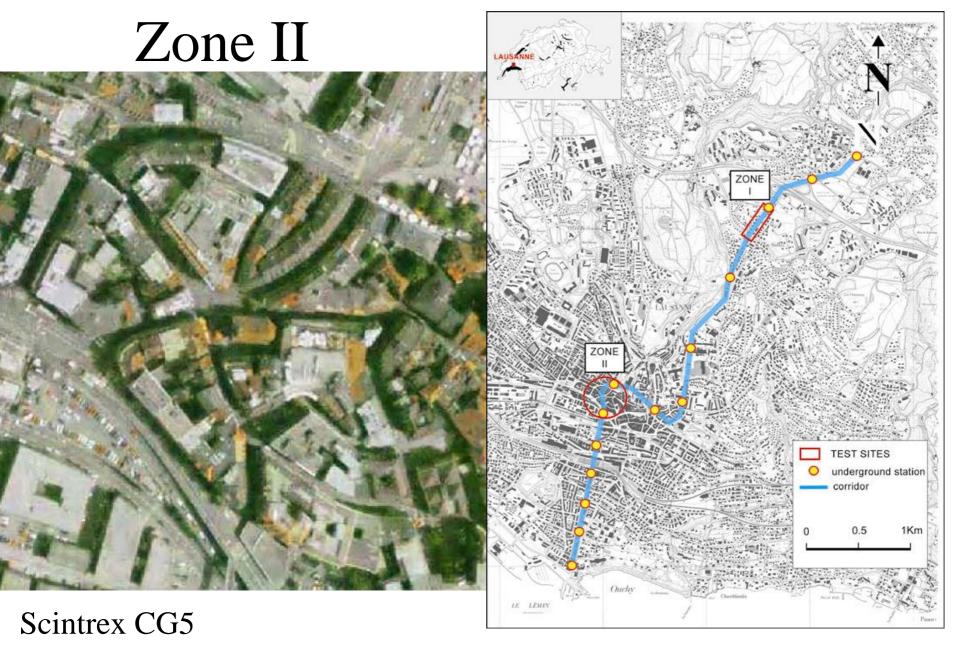
P. Radogna, R. Olivier, P. Logean and P. Chasseriau Institute of Geophysics, University of Lausanne

- length:6 km
- difference in altitude: 323 m
- geology: alpine molassic bedrock (tertiary sandstone) and an overlaying quaternary glacial fill
- depth of bedrock: varying from 1.5 m to 25 m
- The choice of the corridor had to consider the depth of the bedrock

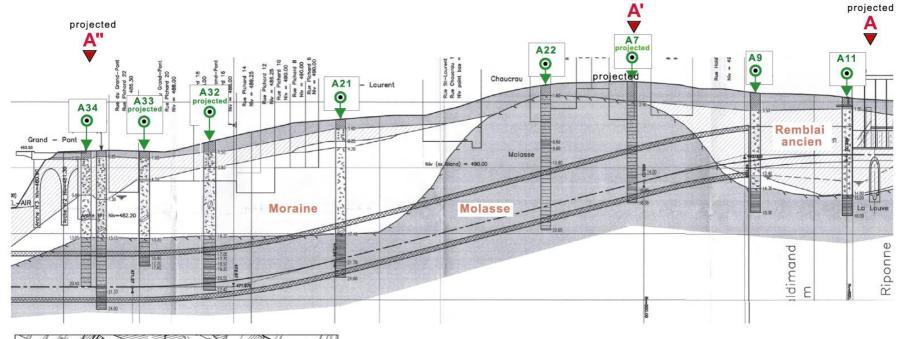
 Source: P. Radogna et al.

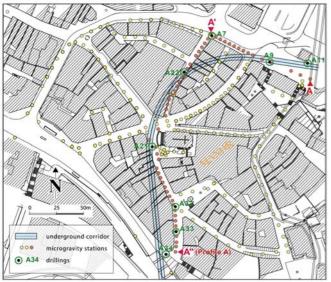
01.06.2005

Source: www.rodio.ch



200 gravity stations

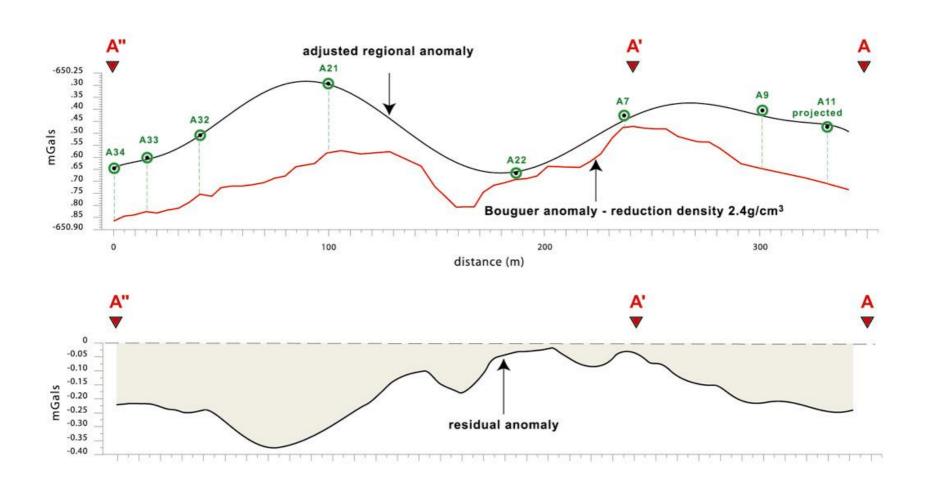




Geological section, approximately A´´-A´-A

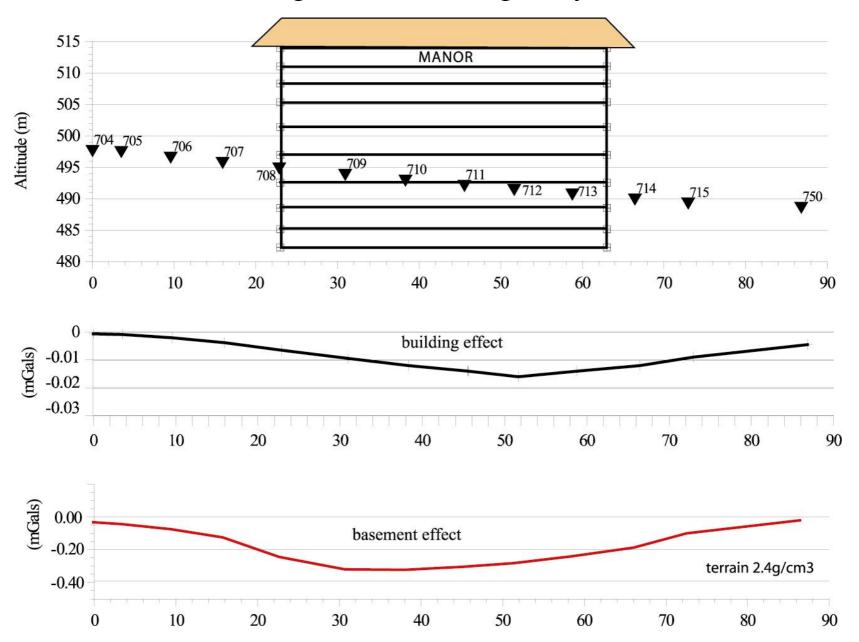
64 Source: P. Radogna et al.

Profile A´´-A´-A

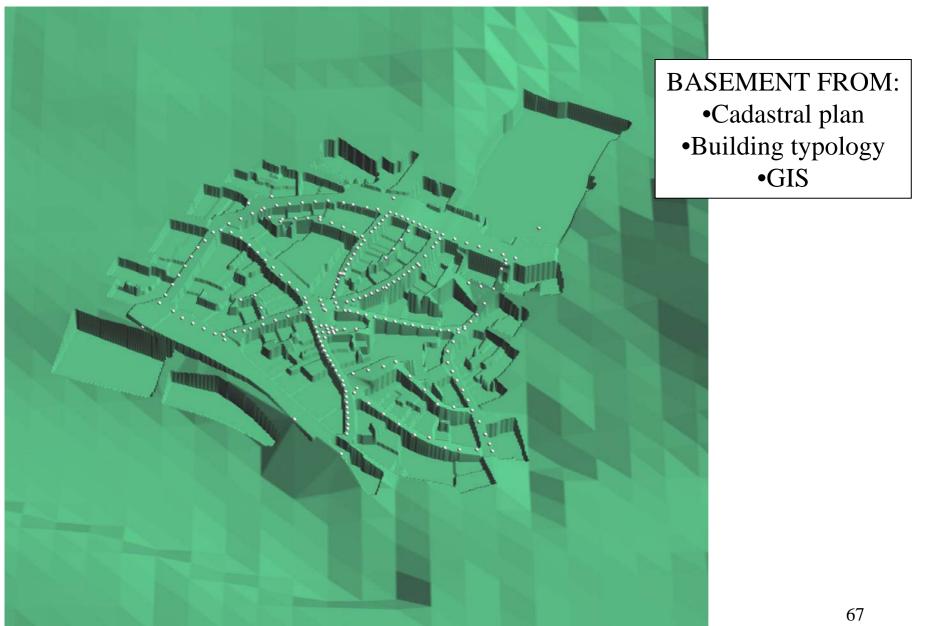


65 Source: P. Radogna et al.

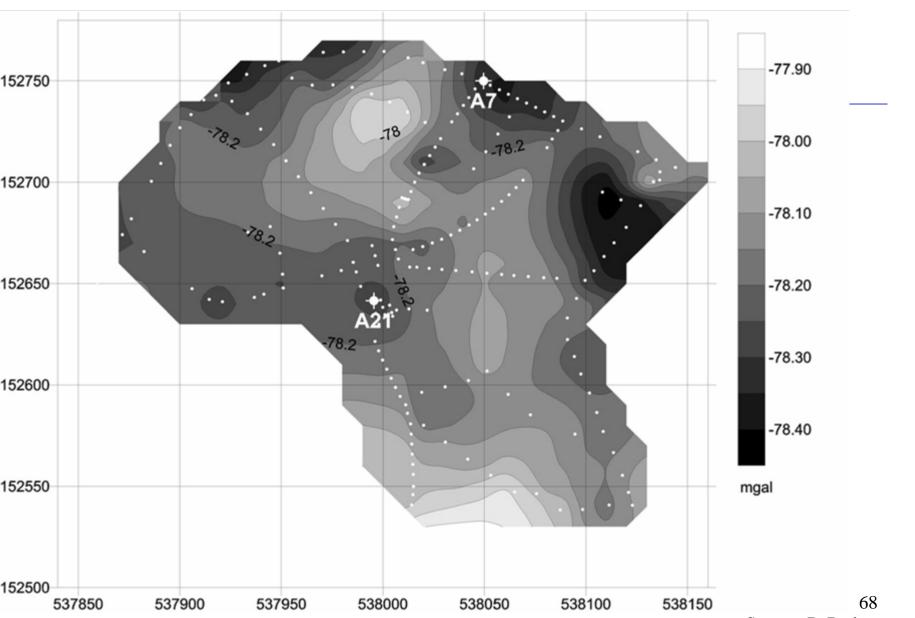
Building and basement gravity effect



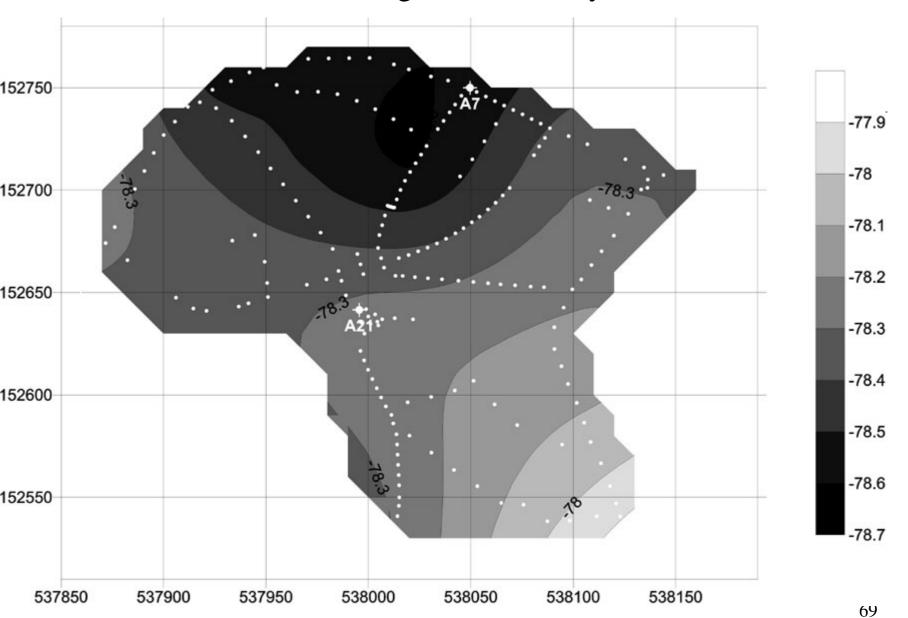
DEM for topographical corrections



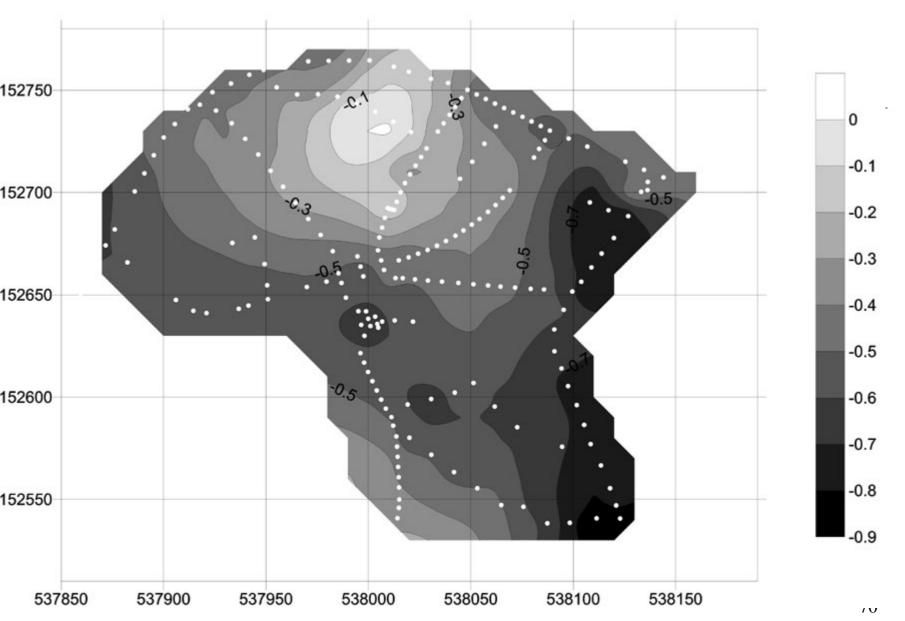
Bouguer Anomaly



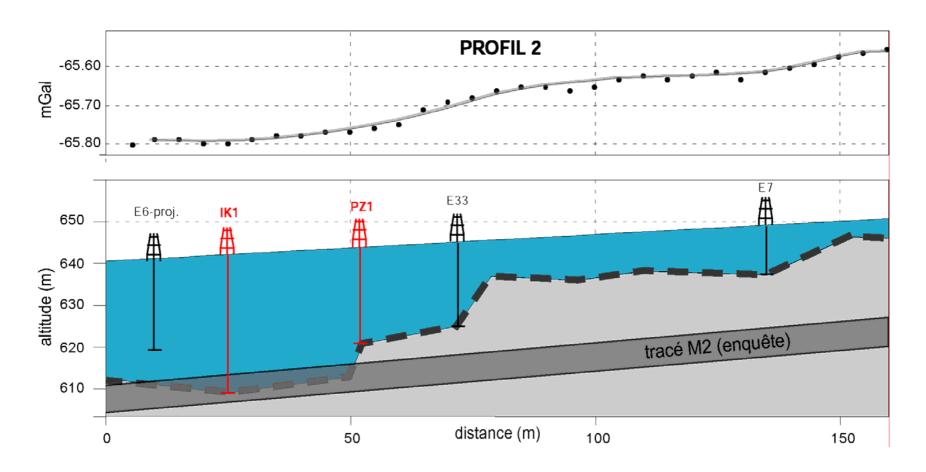
Regional Anomaly



Residual Anomaly



Result...

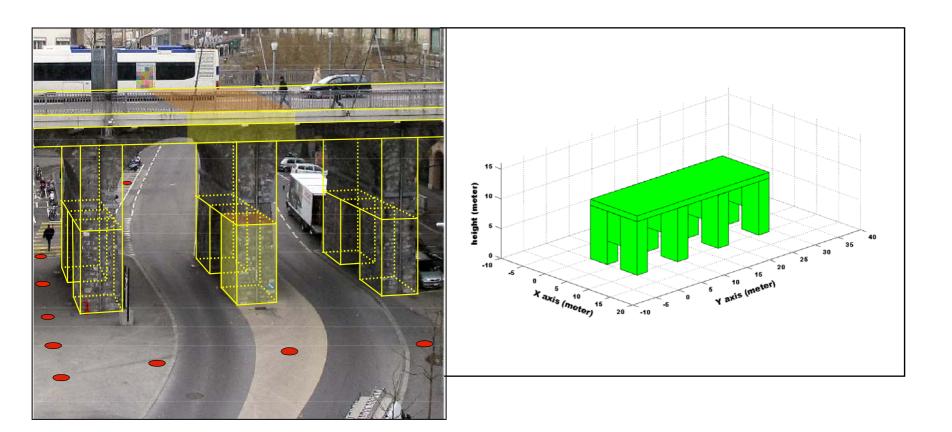


Source: P. Radogna et al.

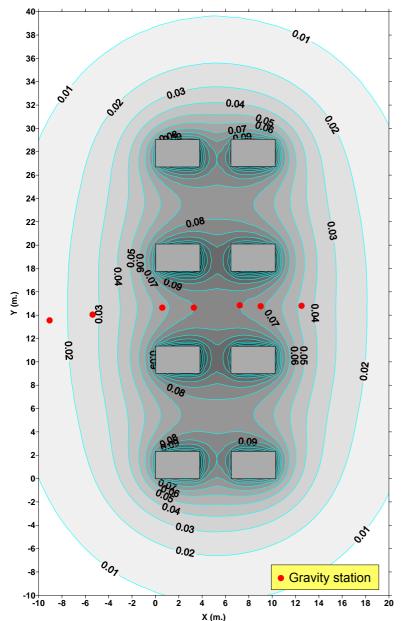
Complex building corrections

Painting of the valley and the bridge before 1874 and actual picture of the same zone

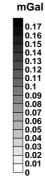
Rectangular prisms are used for modeling the bridge's pillars

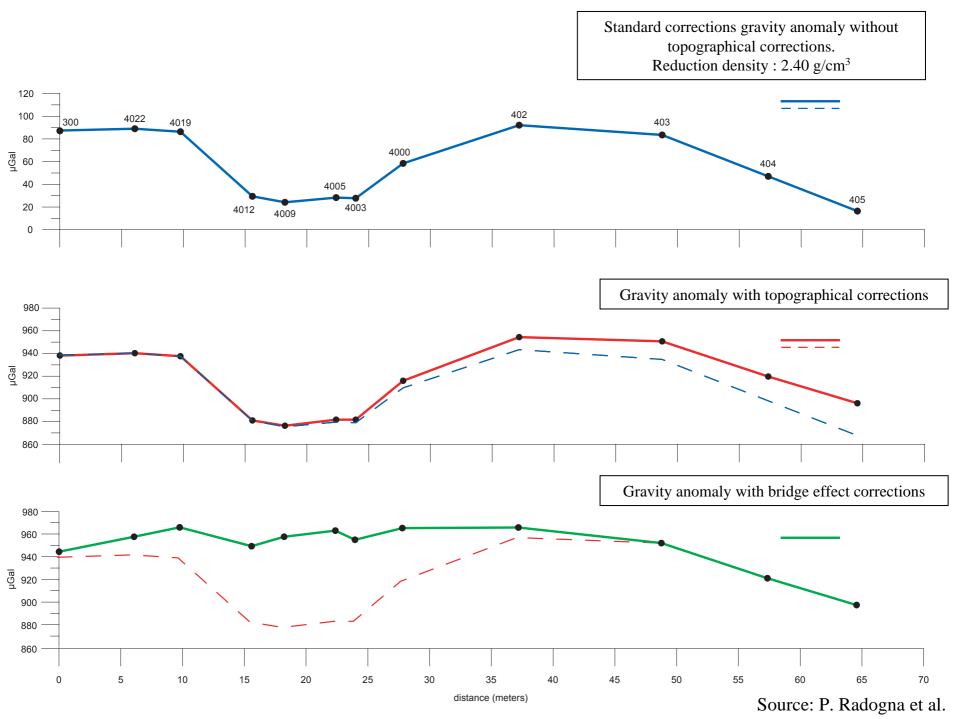


Gravity effect of the bridge



- •Formulation of rectangular prism (Nagy, 1966)
- •Pillar's density is fixed to 2.00 g/cm³





6. Conclusions

Advantages

- The only geophysical method that describes directly the density of the subsurface materials
- No artificial source required
- Useful in urban environment!

Drawbacks

- Expensive
- Complex acquisition process
- Complex data processing
- Limited resolution
- Very sensitive to non-unicity in the modeling solutions